Global Isoprene Emissions Constrained by OMI Formaldehyde Column Measurements

Yuhang Wang¹, Junsang Nam¹, Tao Zeng¹, Kelly Chance², Thomas P. Kurosu², and Alex Guenther³

¹School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.

²Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA.

³National Center for Atmospheric Research, Boulder, Colorado, USA.

Most dominant biogenic hydrocarbon

Isoprene global budget is highly uncertain. Emissions depend on:

- Vegetation type
- Leaf area index
- Light intensity
- Temperature
- Soil moisture

MEGAN Isoprene Emission Inventory

Uncertainty: Spatial variability

Effect of soil moisture

Global isoprene emissions are reduced by 22% in 2006

OMI HCHC

- GEOS-Chem OMI HCHO column in summer, 2006 compared to OMI
- OMI HCHO columns are 4-25% lower than model results depending on the PFT distributions
- The model high bias is large when estimated emissions are higher than 7x10¹² atoms C cm⁻² s⁻¹.

(Millet et al., JGR, 2008)

Inversion of global isoprene emissions

- OMI HCHO measurements and GEOS-Chem simulations in 2006
- Bayesian inversion: source specific and explicit a posteriori uncertainty estimates
 - + Broadleaf
 - + Shrubs
 - + Other biogenic emissions
 - + Biomass burning
 - + Fossil sources

Isoprene emission factor distributions

Inversion regions

- PFT emission factors vary by region due to the diversity of ecosystems
- Signal to noise ratio > 4

Inversion: Bayes' Theorem

P(x) = probability distribution function (pdf) of xP(y|x) = pdf of y given x

Observation pdf
A posteriori pdf
$$P(\mathbf{x} \mid \mathbf{y}) = \frac{P(\mathbf{y} \mid \mathbf{x})P(\mathbf{x})}{P(\mathbf{y})}$$
Normalizing factor

Maximum *a posteriori* (MAP) is the solution to $\nabla_{\mathbf{x}} P(\mathbf{x} \,|\, \mathbf{y}) = \mathbf{0}$

Bayesian Inversion

$$y = Kx + e$$

y: Observations (OMI HCHO)

x: Isoprene source parameters (GEOS-Chem)

K: Jacobian matrix (sensitivity of x to y, GEOS-Chen)

e: error term

Forward model: GEOS-CHEM

$$\hat{\mathbf{x}} = \mathbf{x}_{a} + (\mathbf{K}^{T} \mathbf{S}_{e}^{-1} \mathbf{K} + \mathbf{S}_{a}^{-1})^{-1} \mathbf{K}^{T} \mathbf{S}_{e}^{-1} (\mathbf{y} - \mathbf{K} \mathbf{x}_{a}),$$

$$\hat{S} = (K^{T} S_{\varepsilon}^{-1} K + S_{a}^{-1})^{-1}$$

$$= S_{a} - S_{a} K^{T} (K S_{a} K^{T} + S_{\varepsilon})^{-1} K S_{a}$$

Bayesian Inversion: HCHO columns

		1111111		11111	
	Isoprene emissions			Weighted uncertainty ^c	
	Tg C/yr		_	%	
Region	pri	post		pri	post
N. America	38.9	25.5		369	135
S. America	146	69.5		350	53
Africa	98.2	66.5		376	67
South Asia	35.4	22.6		374	95
East Asia	15.3	13.1		369	118
Europe	7.3	9.6		377	162
Global	401	266			

- Significant reduction over regions with large biogenic emission: N.
 America, S. America, Africa, South Asia (excluding India)
- Uncertainties are reduced but remain large

Bayesian Inversion: Emissions

Bayesian Inversion: Emissions

	N America		S America
	pri	proj	pri proj
Biomass	0.8	2.8	4.0 5.4
Broadleaf	41.9	20.3	123 37.0
Shrub	13.5	10.7	29.6 21.5
OBVOC	0.2	0.2	2.5 6.3
Fossil	6.7	11.2	1.0 2.0
CH₄	38.9	38.9	40.4 40.4
Total	102	84.2	201 113

Much larger reduction of HCHO columns attributed to broadleaf than Shrub

Recycling of OH in its oxidation of isoprene

- Aircraft measurements in October 2005 between 3–6 N and 50–60 W over the tropical Atlantic Ocean and the pristine forests of Suriname, Guyana and Guyane (French Guiana)
- An OH recycling efficiency of 40–80% in isoprene oxidation is needed in modeling of observed OH.
 (Lelieveld et al., Nature, 2008)
- ISO₂ + HO₂ \rightarrow ISOOH + nOH; n = 0, 2, 4 The OH recycling efficiencies of 40 and 80% correspond to n = 2 and 4, respectively. (Butler et al., ACP, 2008)

Effects of OH recycling on inversion

Effects of OH recycling on inversion

Effects of OH recycling on inversion

Ratio of a posteriori to priori emissions

	N Am	nerica	S America		
	Std	40H	Std	40H	
Broadleaf	0.49	0.75	0.30	0.69	
Shrub	0.79	0.85	0.69	0.68	
OBVOC	0.99	1.84	2.57	1.67	
Fossil	1.69	1.12	2.06	1.25	
Biomass	3.36	1.66	1.36	0.93	

A posteriori broadleaf emission reduction is much less

Recap

A priori:
401 Tg C yr⁻¹
A posteriori (no OH recycling):
266 Tg C yr⁻¹
A posteriori (OH recycling):
340 Tg C yr⁻¹

A posteriori regional uncertainty: 50-160%

Acknowledgements

- GEOS-Chem development and user community
- Funding support by the NASA Atmospheric Chemistry Modeling and Analysis Program